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Abstract

The properties of the solutions of a family of non-linear parametric problems are investigated in the neighbourhood of regular and
irregular values of the parameter. Rules are proposed for constructing feedback-type controlling for non-linear dynamical systems
with perturbations. An example is presented.
© 2008 Elsevier Ltd. All rights reserved.

An important factor, which has to be taken into account when constructing control laws for dynamical systems, is
uncertainties of different kinds. An uncertainty in the form of a disturbance, which is unknown in advance and acts
on the system, is considered. In accordance with the commonly accepted approaches,1–3 feedback-type controls are
constructed which are formulated using the solutions of auxiliary problems that depend on a parameter and are problems
for the optimal control of a dynamical system which is non-linear with respect to the state and linear with respect to
the control. It is assumed that the optimal control of the auxiliary parametric problem is a bang-bang control. The
necessary and sufficient conditions for optimality have already been obtained for problems with bang-bang control,4,5

an analysis of the sensitivity of the solutions has been carried out and the differentiability of the switching points in
the neighbourhood of a regular value of the parameter has been investigated.6,7

When parametric problems are used to construct feedback, the parameter changes in a specified interval of the
control, and situations when the value of the parameter will not be regular therefore cannot be avoided. On account
of this, the properties of the solutions are investigated below in the neighbourhood of both regular as well as irregular
values of the parameter. Such problems have not been previously investigated.

The principle of the construction of a feedback which is used below leads to the fact that the control is discontinuous.
As a consequence of this, the initial dynamical system, which is looped by such feedback, will be discontinuous with
respect to its state and cannot have classical solutions.8 Most attention is paid to investigating just such situations.
Rules for constructing the control in each of the possible situations are described and constructive rules for identifying
then are proposed.
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1. Formulation of the problem

Consider the controlled dynamical system

(1.1)

where z is a state vector, u = u(t) is a scalar control, f0(z) ∈Rn is a specified fairly smooth function, b is a specified
n-vector and w(t), t ≥ 0 is a disturbance which is not known in advance and acts when the system is functioning. We
shall assume that w(t) is any piecewise-continuous n-vector function.

It is required to transfer system (1.1) from a given initial state x0 ∈Rn at the instant of time t = 0 to a specified final
state x∗ ∈Rn at the instant of time t = t*. The control quality is estimated by the functional

(1.2)

Feedback-type controls are customarily used to control systems with uncertainties (interference) Feedback

is often constructed1–3 according to the principle

(1.3)

where u0(t|�, z), t ∈ T� = [�, t*] is the solution of the parametric problem

(1.4)

The concepts of admissible control u(·|�, z) = (u(t|�, z), t ∈ T�) and optimal u0(·|�, z) and the trajectories corresponding
to them x(·|�, z), x0(·|�, z) in the case of problem (1.4) are introduced in the standard way.9,10 The pair (x0(·|�, z), u0(·|�,
z)) is called the (strongly) locally optimal solution11 if a � > 0 exists such that

for any admissible pair x(·|�, z), u(·|�, z), for which the condition

is satisfied.
On the basis of known results in Ref 9, it can be shown that an optimal control exists in problem (1.4) if the set

of admissible controls is not empty. By virtue of the non-linearity of the problem, cases are possible when several
locally-optimal solutions exist. However, in this paper, the following proposition concerning the uniqueness of the
solution of problem (1.4) is assumed to be satisfied.

Proposition 1. For the pair (t, z) ∈ T × G, the problem OC(�, z) has a unique locally optimal solution.

When the feedback (1.3) is used, the behaviour of the dynamical system (1.1) is described by the equation

(1.5)

in the which the right-hand side, in the general case, is a discontinuous function of the position. It is well known8 that,
in such cases, a classical solution of problem (1.5) may not exist.

The aim of this paper is to construct controls using the feedback (1.3) for dynamical systems with perturbations.
According to relations (1.3)–(1.5), the control u*(�) = u(�, z(�)) at the instant � in a system which is looped by

feedback is constructed using the solution of the parametric problem OC(�):=OC(�, z(�)), where z(�) is the currect
state of the actual system, which is assumed to be known at the instant �. Consequently, to develop effective methods
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for constructing controls u*(�), � ≥ 0 and to study their properties, it is necessary to investigate the properties of the
solutions of the parametric problems OC(�), � ≥ 0. These problems are considered in the following section.

2. The parametric optimal control problem

As was mentioned above, in order to construct a feedback it is necessary to investigate the properties of the solutions
of the parametric problems OC(�), � ≥ 0, which can be written in the form

(2.1)

Here, z(�) is a certain continuous n-vector function, the value of which is assumed to be known when the problem
OC(�) is considered, and � is a parameter.

Suppose problem (2.1) is solved for a certain fixed value of the parameter �0 ≥ 0. It is required to find the solution
of the problems OC(�), � ∈ E+(�0) using the known solution of the problem OC(�0). Here, E+(�0) is the right-side
neighbourhood of the point �0.

1◦. Definitions. Necessary conditions of optimality. We will first describe the properties of the solutions of problem
(2.1) for a fixed value of the parameter � under the assumption that a admissible control exists for it.

Suppose u0
�(·) = (u0

�(t), t ∈ T�), and x0
�(·) = (x0

�(t), ∈ T�) are the optimal control and trajectory of problem OC(�). We
shall consider the system

(2.2)

Proposition 2. System (2.2) is T�-controllable,12 that is, for any vector g ∈Rn, a piecewise-continuous function �u(t),
t ∈ T� exists such that the equality �x(t*) = g is satisfied on the corresponding trajectory of system (2.2).

The following theorem can be proved on the basis of Proposition 2 and the classical maximum principle.10

Theorem 1. Suppose u0
τ (·) and x0

τ (·) are the optimal control and trajectory of problem (2.1) and Proposition 2 is
satisfied. A vector �∗(�) ∈Rn then exists such that, along the solutions ��(t), t ∈ T� of the conjugate system

(2.3)

the conditions

(2.4)

(2.5)

are satisfied.

We will denote the set of all vectors �*(�) which satisfy relations (2.3)–(2.5) by Q(�). By analogy with non-linear
programming, we shall call the vector �*(�) ∈ Q(�) the Lagrange vector.

Suppose �*(�) ∈ Q(�) and ��(t), t ∈ T�, are the corresponding solution of the conjugate system. We now construct
the switching function

(2.6)

Proposition 3. The function ��(·) vanishes at a finite number of points.
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In this case, according to the maximum principle, the optimal control will be a bang-bang control and it is given by
the formula

Proposition 4. We shall assume that �(�) �= 0 and consider a certain vector �*(�) ∈ Q(�) and the corresponding
switching function (2.6). We will denote the zeroes of this switching function by tj(�)(j = 1, . . ., p(�)):

We will denote the multiplicity of a zero tj(�) of the function ��(·) by �j = �j(�):

The following assertion can be proved using the results obtained earlier in Ref 13.

Assertion 1. Suppose Propositions 2 and 4 are satisfied. The set Q(�) is then bounded and a vector �*(�) ∈ Q(�) is
found such that the condition

(2.7)

is satisfied.
Here,

and F�(t, υ) is the fundamental matrix of the solutions of the system �ẋ = (∂f0(x0
�(t))/∂x)�x.

We shall call the vector �*(�) ∈ Q(�) which satisfies conditions (2.7) a basis vector. Without loss of generality, we
shall always subsequently assume that the vector �*(�) ∈ Q(�) being considered is a basis vector.

Suppose u0
�(·) and x0

�(·) are the optimal control and trajectory of the problem OC(�), �*(�) ∈ Q(�) is the Lagrange
vector and ��(·) is the switching function corresponding to them. We now introduce the sets of parameters

Here,

Definition 1. We will call the sets S(�) and �(�) the structure and the defining elements of the solution of the problem
OC(�).

Note that these sets S(�) and �(�) are a finite set of data. They enable as to recover the optimal bang-bang control
u0

�(·) of the problem OC(�) in a unique manner and to check the conditions of the maximum principle.
The following definitions are necessary in order to introduce the concept of regularity.
We put
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and introduce the vector of the parameters

and the function

into consideration, where x(t|�, �), t ∈ T� is the continuous solution of the system of differential equations

Using the defining elements of the optimal bang-bang control u0
�(·) of problem (2.1), we form the vector �(�) = (�j(�),

j = 1,. . ., m*; �(�)):

It has been proved* that the set

is non-empty and, in particular, that (1, −�∗(�)) ∈ Λ̄ and

where

Definition 2. The optimal bang-bang control u0
�(·) is said to be regular and the current value of the parameter � is a

regular point if

and the condition

(2.8)

is satisfied.

By analogy with what has been stated earlier in Ref 13, it can be proved that the regularity (non-regularity) of a
point � is independent of the choice of the basis vector �*(�) ∈ Q(�). We note that, in the case of a regular optimal
control u0

�(·), the set �̄ consists of the unique vector 	̂ = (1, −�∗(�)) and the relations n ≤ p(�) + 1, p(�) = m(�) hold,
where m(�) is the number of switching points of the optimal control u0

�(·). The rules for constructing the matrices
∂x(t∗|�(�), �)/∂�, ∂2I(	̂, �(�), �)/∂�2 were presented earlier in Ref. 14.

∗ Kostyukova OI, Kurdina MA, The control of non-linear dynamical systems with perturbations using the solutions of parametric optimal control
problems. Preprint No. 2 (573) Inst. Mat., Narod. Akad. Nauk Belarusi, Minsk, 2005.
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2◦. Construction of the solutions of the family of problems OC(�) in the neighbourhood of a regular point. Suppose
that, for a certain value of the parameter � = �0, the problem OC(�0) has an optimal regular control u0

�(·) with a
structure and defining elements

(2.9)

(2.10)

It is required to determine simple rules for constructing the solutions u0
�(·) of problems OC(�) when � ∈ E+(�0). In

the case of a regular value of the parameter �0, these rules are specified by the theorem presented below which was
proved earlier in Ref. 14. We now introduce the necessary notation for formulating of this theorem.

Suppose the numbers p and k are specified: p ∈N, k = ±1. We consider the (p + 1 + n)-vector

(2.11)

and denote the solution of the system of equations

(2.12)

by x(t|�, �), t ∈ T�, where

and the solution of the conjugate system

(2.13)

by �(t|�, �), t ∈ T�.
We now consider the (n + p + 1)-vector function

(2.14)

We emphasize that the form of the vector � and the vector function 	(�, �), as well as their dimensions, depend on
the parameters p and k, which are assumed to be specified.

Theorem 2. Suppose the problem OC(�0) has an optimal regular control u0
�(·) with a structure (2.9) and defining

elements (2.10). Then, when k = k(�0), p = p(�0),

1) a unique continuous (p + n + 1)-vector function

(2.15)

exists, which satisfies the relations

(2.16)

2) for � ∈ E+(�0), the control u0
�(·):

(2.17)

has the constant structure S(�) ≡ S(�0) and is optimal in the problem OC(�).



O.I. Kostyukova, M.A. Kurdina / Journal of Applied Mathematics and Mechanics 71 (2007) 819–833 825

It follows from Theorem 2 that if the solution of the unperturbed problem OC(�0), which corresponds to the regular
value of the parameter �0, is known, then the construction of the solutions u0

�(·) of the perturbed problems OC(�),
� ∈ E+(�0) reduces to finding the solutions �(�) of the systems of non-linear equations (2.16). The optimal control
u0

�(·) is constructed according to relations (2.17) using the elements of the vector �(�).

3. Construction of the feedback

1◦. Construction of the feedback in the neighbourhood of a regular point. We will consider a certain control of system
(1.1). Suppose �0 is the current instant in real time and z(�0) is the known current state of the system. We will assume
that the solution, which is regular, that is, �0 is a regular point, is known for the problem OC(�0) = OC(�0, z(�0)).

Remark 1. We emphasize that it is impossible to determine in advance (up to the advent of the instant of time �0)
whether the point �0 will be regular or not, since, in each real process, the regularity or irregularity of the point �0
depends on the state of the system z(�0) generated by the perturbation w(t), t ∈ [0, �0)] which has been realized up to
this instant.

For � ∈ E+(�0), we shall construct the feedback according to the rule (1.3) which, when account has been taken of
the results in Section 2, we can write in the form

(3.1)

Here, �(�) is the component of the vector function �(�) (see (2.15) which is the solution of system (2.16). This
system is uniquely formed when k = k(�0) and p = p(�0) using the solutions of systems (2.12) and (2.13) in which
z(�) = z(�|u∗

� (·), w�(·)) is the current state (at the instant �) of the real system

(3.2)

where w�(·) = w(t), t ∈ [0, �)) is the perturbation acting on the system during its operation and u∗
� (·) = (u∗(t), t ∈ [0, �))

is the control constructed up to the current instant �.
The feedback is constructed according to the rule (3.1) in the interval � ∈ [�0, �1], where �1 is the instant when a)


(�1) �= 0 or b) �1 = t* − �. Here, � > 0, a fairly small number, is the parameter of the algorithm. In case a, the regularity
conditions are violated in the case of the problem OC(�1) and the feedback is subsequently constructed according to
the rules described in the following subsection. In case b, the construction of the feedback is finished. The need to
stop the construction of the feedback was due to the fact that, when account is taken of the assumptions in this paper,
irregularity arises ever more frequently as the real instant of time � approaches t*. It is therefore reasonable to stop the
process of feedback construction at the instant �1 = t* − � and, when � ∈ [t* − �, t*] to feed a control u∗(�) = u0

�, (�),
which is the solution of the problem OC(�0), into the input of the system.

2◦. Construction of the feedback in the neighbourhood of an irregular point. As previously, suppose the current state
z(�0) of the actual system and the solution u0

�(·) of the problem OC(�0) = OC(�0, z(�0)) are known for the current
instant �0. We will now assume that the value of �0 is irregular.

We shall consider the case 
(�0) = 1. Condition (2.8) is assumed to be satisfied. In this case, irregularity can arise
for one of the following reasons.

Situation 1: l*(�0) = 1. This means that the first zero of the switching function ��0 (·) coincides with the current
instant �0: t1(�0) = �0. The corresponding switching function is represented by the thin curve in Fig. 1.

Situation 2: l*(�0) = 1. This means that the last zero of the switching function ��0 (·) coincides with the instant
t∗ : tp(�0)(�0) = t∗. The corresponding switching function is represented by the dashed curve line in Fig. 2.

Situation 3:
∑p(�0)

j=1 �j(�0) = 1. This means that the switching function ��0 (·) has a multiple zero. The corresponding
switching function is represented by the dashed curve in Fig. 3.

Unlike a regular point, an irregular point �0 is characterized by the fact that, in the general case, there is a change
in the structure of the solution of the problems OC(�): S(�0) �= S(�0 + 0) at this point.15 The new structure S(�0 + 0)
belongs to a certain set P(�0) of structures which are permitted at the point �0. It will be shown later that the actual



826 O.I. Kostyukova, M.A. Kurdina / Journal of Applied Mathematics and Mechanics 71 (2007) 819–833

Fig. 1.

Fig. 2.

form of the new structure S(�0 + 0) ∈ P(�0) can be determined knowing w(�0 + 0), and, in considering the current
irregular point �0, we shall therefore henceforth assume that the current state z(�0) and the perturbation w(�0 + 0) are
known.

We will investigate the degenerate Situations 1–3 under the assumption that n = p(�0) + 1 and, consequently,
n = m(�0) + 2.

Situation 1. Since the feedback (1.3) is constructed using the solution of the parametric problems OC(�), we will
investigate the properties of these problems in the neighbourhood E+(�0) of the irregular point �0. Suppose the optimal
bang-bang control u0

�0
(·) of the problem OC(�0) has the following structure and defining elements

(3.3)

(3.4)

Fig. 3.
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The structure of the solution is determined by the switching function, and the behaviour of this function when � ∈ E+(�0)
changes is therefore primarily of interest.

When � ∈ E+(�0), the following cases are possible in problems OC(�) = OC(�, z(�)).

Case A. The Lagrange function �∗(�), � ∈ E+(�0) is continuous at the point

The switching function ��(·) will have the form shown by the thick curve in Fig. 1.

Case B. The Lagrange function �∗(�), � ∈ E+(�0) is discontinuous at the point

The new function ��0+0(·), which corresponds to the new vector �*(�0 + 0), will have the form shown by the dashed

curve in Fig. 2 (we call this subcase Ã) or in Fig. 3 (we call this subcase ). When � ∈ E+(�0), the switching function
��(·) will have the form shown by the heavy curve in Fig. 2 or Fig. 3.

Case C. The Lagrange function �∗(�), � ∈ E+(�0) is continuous at the point

The identity t1(�) ≡ �, � ∈ E+(�0) is satisfied for the switching function ��(·).

We will now show how, knowing the value of just a single parameter (	1), which is calculated on the basis of the
data available at the instant �0, it is possible to determine which of the Cases A–C will be realized for � ∈ E+(�0).

We put

(3.5)

and introduce the vector of the parameters � given by formula (2.11). The solutions of the direct and conjugate systems
(2.12) and (2.13) are denoted by x(t|�, �) and �(t|�, �), t ∈ T� respectively and the function 	(�, �) is determined
according to the rules (2.14), using parameters k and p, specified by relations (3.5).

It was shown in Ref. 14 that

Using these relations and the implicit function theorem, we conclude that a unique continuous vector function �(�)
exists (see (2.15)) which satisfies relations (2.16).

We obtain

(3.6)

We shall distinguish between the cases �1 > 1, �1 < 0, �1 ∈ (0, 1) consider each of them and indicate their relation to
Cases A–C described above. The cases �1 = 0 and �1 = 1, which require additional investigation, are not considered
here.

The case �1 > 1. It can be shown (see the footnote in Section 2) that, if �1 > 1, the relation t1(�) > � is satisfied for
� ∈ E+(�0)\�0 which means that the first zero t1(�) of the switching function ��(·) departs to the right, forming a new
switching point t1(�) > � of the control u0

�0
(·). In other words, when � ∈ E+(�0)\�0, the switching function ��(·) will

have the form represented by the heavy curve in Fig. 1 and the control, which is constructed according to the rules
(2.17) using the solution �(�) of system (2.16) in which the parameters �0, k and p are determined from (3.4) and
(3.5), has a constant structure of the form

and is the optimal control in the problem OC(τ), τ ∈ E+(τ0).
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It follows from the arguments which have been presented that Case A described above will hold when the inequality
�1 > 1 is satisfied. For � ∈ E+(�0), the feedback (1.3) is constructed in the same way as in the regular case: according
to the rules (3.1), where �(�) is the component of the vector �(�) which is the solution of system (2.16) in which the
parameters �0, k and p are defined by relations (3.4) and (3.5), and z(t) is the current state of system (3.2).

The case �1 < 0. Since �1 < 0, the inequality

is true for the components t1(�) of the solution �(�) of the system of non-linear equations (2.16), where �0, k and p
are given by relations (3.4) and (3.5).

Consequently, this vector �(�) cannot be used to construct a control using the rules (3.1) since a control constructed
using these rules will not be an admissible control.

In the Situation 1 being considered, the set Q(�0) of Lagrange vectors consists of more than a single vector. We
construct (see footnote in Section 2) a new Lagrange vector

and denote the new switching function corresponding to the vector �̄∗ by �̄�0 (·). It can have the form shown by the

dashed curve in Fig. 2 (Subcase Ã) or in Fig. 3 (Subcase ).
We will now consider Subcase Ã. Here, the point t = �0 ceases to be a zero of the new switching function and the

point t = t* becomes a (simple) zero of the new switching function. It can be shown (see footnote in Section 2) that, if
�1 < 0, then �̄�0 (·) = ��0+0(·) and, when � ∈ E+(�0)\�0, the last zero tp(�), tp(�0 + 0) = t*, of the switching function
��(·) moves a little to the left (�p := ip(�0 + 0) < 0), forming a new switching point tp(�) < t* of the control u0

�(·). In other
words, when � ∈ E+(�0)\�0, the switching function ��(·) will have the form represent by the heavy curve in Fig. 2 and
the control u0

�(·), constructed according to the rules (2.17) where �(�) = (tj(�), j = 1, . . ., p; �(�); �*(�)) is the solution
of system (2.16) when

(3.7)

with the initial condition

has a constant structure of the form

and is the optimal control in the problem OC(�).
We will now consider the subcase . Here, the point t = �0 again ceases to be a zero of the new switching function and

a multiple zero of the new switching function appears at the point t = t̄, t̄ ∈ (t0
j0, t

0
j0+1), j0 ∈ {0, 1, . . . , p(τ0)}. It can be

shown (see footnote in Section 2) that, if �1 < 0, then �̄�0 (·) = ��0+0(·) and, when � ∈ E+(�0)\�0, the multiple zero t̄ of
the new switching function �̄�0 (·), when � ∈ E+(�0)\�0, generates two new switching points tj0 (�) and tj0+1(�), tj0 (�0 +
0) = tj0+1(�0 + 0) = t−, of the optimal control of problem OC(�) for which

This means that, when � ∈ E+(�0)\�0, the switching function ��(·) will have the form represented by the heavy curve
in Fig. 3 and the control u0

�(·), constructed according to the rules (2.17), where �(�) is the solution of system (2.16)
when

(3.8)
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with the initial condition

has a constant structure of the form

and is the optimal control in the problem OC(�).
It follows from the results obtained that Case B described above holds when the inequality �1 < 0 is satisfied. When

� ∈ E+(�0)\�0, the feedback (1.3) is constructed in the same way as in the regular case: using rules (3.1), where �(�)
is the component of the vector �(�) (see (2.15)) which is the solution of the system of equations (2.16) in which,
in the Subcase Ã, the parameters k and p are determined from relations (3.7) and the initial condition has the form
�(�0 + 0) = �̃ while, in Subcase , p and k are determined from relations (3.8) and the initial condition has the form
�(�0 + 0) = �̄; z(�) is the current state of system (3.2).

The case �1 ∈ (0, 1). In this case, the control

cannot be constructed using any of the rules described in the cases when �1 > 1 and �1 < 0. The case being considered,
t1(�0) = �0 and �1 ∈ (0, 1), corresponds to a situation when the point (�0, z(�0)) is located on the surface of discontinuity
J of the function f̄ (z, τ, w):=f (z, u(τ, z)) + w and, when � ∈ E+(�0), a classical solution does not exist in system
(1.5). According to the approach in Ref. 8, the solution z(t), t ≥ �0 of system (1.5) will therefore be determined in such
a way that the points (t, z(t)), when � ∈ E+(�0), remain on the surface of discontinuity J . It is customary8 to call this
solution a sliding mode.

According to the agreement, we shall construct the control

(3.9)

in the sliding segments when � ∈ E+(�0) in such a way that the trajectory of the real system (1.5) slides along the
surface of discontinuity J . In terms of the solutions of the problems

(3.10)

this condition means that the first zero t1(�) of the switching function of the problem OC(�) coincides with the current
instant �:

(3.11)

Here z(�) = z(�|u∗
� (·), w�(·)), � ∈ E+(�0) is the state of system (3.2), which is generated by the control u∗

τ (·) =
(u∗(t), t ∈ [0, �)) constructed and the perturbation w�(·) = (w(t), t ∈ [0, �)) which has been realized.

We will now obtain the relations which enable us to construct control (3.9) which ensures that condition (3.11) is
satisfied. Here, we shall assume that the state z(�) of the real system and the perturbation w(� + 0) are known at each
current instant �.

We put

We now consider a (p + n)-vector of the parameters �̂ = (tj, j = 2, . . . , p; �; �∗) and denote the solutions of the direct
and conjugate systems
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by x̂(t|z, �̂, �), �̂(t|z, �̂, �), t ∈ T� with the boundary conditions

We will now construct a (p + n + 1)-vector function 	̂(z, �̂, �) according to the rules (2.14) in which the functions

x(t*|�, �), �(t|�, �) are replaced by x̂(t∗|z, �̂, �), �̂(t|z, �̂, �):=�̂
T

(t|z, �̂, �)b and t1 = �.
It has been shown (see footnote in Section 2) that a number |�̃| < �(�0) and unique continuous functions

(3.12)

exists which satisfy the relations

and that, when � ∈ E+(�0), the first zero t1(�) of the switching function of problem OC(�) (3.10) coincides with the
current instant �; the control u0

�(·), constructed according to the rules (2.17), taking account of identity (3.11), is the
optimal control in the problem OC(�) and has a constant structure S(�) = S(�0) of the form (3.3).

Rules for calculating the number �̃ and for constructing the function (3.12) have also been described (see footnote
in Section 2). According to these rules, in order to construct a control u*(�) at the current moment in time � it is
sufficient to know the current state of the system z(�) and the current perturbation w(� + 0). Hence, we have feedback
with respect to the current state and perturbation in the intervals where there is sliding.

Taking account of the relation

and the continuity of the functions u∗(�), �(�), � ∈ E+(�0)\�0, we conclude that the following inequality holds

It follows from the results obtained that, when �1 ∈ (0, 1), Case C described above will hold.
The control u*(�), constructed using the proposed rules, is fed into the input of system (3.2) in the interval � ∈ (�0,

�*), where �1 > �0 is the instant which is the closest from the right to �0 for which the equality �1 = t* or u*(�1) or

(�1) > 1 is satisfied.

The first equality means that the process of constructing the feedback has been completed. The second equality
means that, when � > �1, the trajectory of the real system leaves the surface of discontinuity and, in order to construct the
control u*(�), � > �1, the rules described above for the cases when �1 > 1 and �1 > 0 are used, depending on which of the
equalities u*(�1) = �(�1) or u*(�1) = −�(�1) holds. The cases 
(�1) > 1 are the subject of an independent investigation
and are not considered in this paper.

Situation 2. This situation is investigated in an analogous manner to Situation 1 only now all the constructions start
out from the switching function ��0 (·) represented by the dashed curve in Fig. 2. Here, as in Situation 1, the following
cases can be realized when � ∈ E+(�0):

a) the last zero tp(�0) = t* of the initial function ��0 (·) moves to the left forming a new switching point tp(�) = t* of the
control u0

�(·) (see Subcase Ã of Case B);
b) a new switching function �̄�0 (·) = �̄�0+0(·) is constructed which has the form shown by the thin curve in Fig. 1

(a sliding mode then arises (see Case C) or the first zero t1(�0) = �0 of the new function �̄�0 (·) moves to the right
forming a new switching point t1(�) > � of the control u0

�(·) (see Case A)), or the switching function has the form
shown by the dashed curve in Fig. 3 (the multiple zero of the new switching function �̄�0 (·) then generates two

new switching points of the control u0
�(·) (see Subcase of Case B)).

The cases which have been enumerated are identified and the control u∗(�), � ∈ E+(�0) in each of them are
constructed in the same way as in Situation 1.
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Situation 3. This situation is investigated by analogy with Situations 1 and 2 only now all of the constructions start
out from the switching function represented by the dashed curve in Fig. 3.

The rules for constructing the feedback in the neighbourhood of an irregular point �0 under the assumption that

(�0) = 1 and n = p(�0) + 1 have been described above.

The case when 
(�0) = 1 and n < p(�0) + 1 is simpler to investigate since the Lagrange function �*(�) at the point
�0 will always be continuous under such conditions. This case has also been investigated by us. However, it is not
presented here for lack of space.

The case when 
(�0) > 1 is more complex; it was investigated for linear systems earlier.13,15

Remark 2. In order to construct the feedback at regular points � using the proposed rules, only a knowledge of the
current state z(�) is required while, at irregular points �, the further minimal additional information w(� + 0) is required.

Remark 3. The investigations are carried out in a similar manner in the case of vector control.

4. Example

We will now illustrate the theoretical results obtained by a numerical example. We consider a model of an electric
circuit,4 the dynamics of which are described by the system of differential equations

(4.1)

where w(t), t ∈ T is a certain unknown perturbation, which acts on the system when it is functioning, t* = 4. It is required
to transfer system (4.1) from an initial state z(0) = (−5, −5)T into a specified final state z(t*) = x* = (0.253, 1.610)T. The
quality of the control is estimated by the functional (1.2).

On the basis of the results obtained, for the control of the real system (4.1) we shall use the solutions of the family
of auxiliary problems which, in this example, has the form

where z(�) is the state of the real system (4.1) at the instant �.
The instant � = 0 is a regular point. The optimal control of the problem OC(0) and the corresponding Lagrange

vector have the form (a zero subscript henceforth indicates that the value of a function is taken at the point � = 0)

where

The structure and the vector of the defining elements are given by the relations

Time is considered as a continuous quantity in theoretical investigations. However, it is obvious that discretization
is necessary in the case of a numerical application. We therefore subdivide the interval T into r = t*/h intervals with
a certain fairly small step size h > 0 and assume that the current state z(ih) of system (4.1) can be measured at real
instant of time of the form � = ih (i = 1, . . ., r). On the basis of the results obtained above, we shall use the following
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“discrete” version of the feedback construction. For i = 1, . . ., i1 in the intervals [ih, (i + 1)h)], we shall construct the
control according to the rule

where �(ih) is the component of the vector

which is the solution of system (2.16) when

Here i1 > 1 is a number which is such that the instant � = i1h is the first irregular point. The actual value of the number
i1 is determined during the course of the calculations from an analysis of the current value of the vector �(i1h). For
example, the point i1h is assumed to be irregular if t1(i1h) ≈ i1h or t1(i1h) ≈ t2(i1h) or t2(i1h) ≈ t*.

In order to find the vector �(ih), we solve the corresponding system (2.16) using the known vector �((1 − 1)h) as
the initial approximation.

The new structure of the solution S((i1 + 1)h) is determined at the instant of time � = i1h when the regularity con-
dition is violated, that is, the new parameters p = p((i1 + 1)h) and k = k((i1 + 1)h). The new vector �((i1 + 1)h) and the
corresponding system of non-linear equations (2.16) are formed using the new p and k. The control of system (4.1) is
continued with this information.

In the example considered, h = 0.05 and the following was considered as the perturbation acting on the system

It was assumed that this perturbation was unknown in advance and only the current state z(�) of system (4.1), generated
by this perturbation and the control constructed up to the instant �, was used for the calculations at the current instant
�.

Under the action of the perturbation w(t) and the control calculated using the proposed rules, system (4.1) at the
final instant of time was in the position

A graph of the control u*(t), t ∈ T is shown in Fig. 4.
Note that, in the control of the dynamical system (4.1) which is being considered, the regularity conditions are

violated three times at the instants �(1) = 0.95, �(2) = 2.6, �(3) = 3.65 and that Situation 1 holds on each occasion. The
coefficient �1 (see (3.6)) was calculated for each instant of irregularity and the new structure of the solution was
constructed, the form of this being determined by the value of this coefficient. In the time interval [0, �(1)], the structure
of the solution is identical to the initial structure and has the form

At the first instant of irregularity �(1) = 0.95, the coefficient �1 takes a negative value. Since n < p(�(1)) + 1, the
parameter p = p(�(1)) decreases by unity, the parameter k = k(�(1)) changes sign and the new structure of the solution is
given by the relations

(4.2)

At the second instant of irregularity �(2) = 2.6, the value of the coefficient �1 is also negative. However, since
n = p(�(2)) + 1 now, the Lagrange function loses its discontinuity in this case and the new switching function vanishes
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Fig. 4.

when t = t* (see Subcase Ã of Case B). The new structure of the solution S3(t) = S(�(2)) + 0), t ∈ (� ∈ (�(2)), �(3)] differs
from the structure of (4.2) by the replacement of k = −1 by k = 1.

At the third instant of irregularity �(3) = 3.65, we have n = p(�(3)) + 1, and the value of �1 falls in the interval (0, 1),
which means that a sliding mode (see Case C) arises and the corresponding structure S4(t) = S(�(3)) + 0), t ∈ (� ∈ (�(3),
t*] differs from the structure of (4.2) in the replacement of l* = 0 by l* = 1.
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